Reshaping & Combining Tables

Unit of analysis
Combining
- **set**: concatenate tables (stack rows)
- **merge**: link tables (attach columns)
Reshaping
- **proc summary**: consolidate rows
- **proc transpose**: reshape table

Hye-Chung Kum
Population Informatics Research Group
http://research.tamhsc.edu/pinformatics/
http://pinformatics.web.unc.edu/

License:
Data Science in the Health Domain by Hye-Chung Kum is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Course URL:
http://pinformatics.tamhsc.edu/phpm672

Table Operations:
multiple table → 1 table

- **set** (Append)

| Table A | Table B | → | Table A | Table B |

- **merge** (link)

| Table A | Table B | → | Table A | Table B |

Assignment 4

- Concatenate multiple tables (more rows)
 - stack tables on top of each other to increase the number of rows
 - using set
 - Be sure to understand the different behavior given different situations (i.e. what happens to shared variables? What happens to not shared variables?)
- Link up multiple tables using a shared key (more columns)
 - align the rows using the shared key, and link multiple tables to increase the number of variables in the tables
 - using merge
 - Be sure to understand the different behavior given different situations (i.e. what happens to shared vars? What happens to not shared vars?)
 - What is a 1-to-1 link
 - What is a N-to-N link (you will not be doing this, but need to understand what this is. This must be done with proc sql in SAS)

Table Operations:
1 table → 1 table (reshaping)

- **Proc Transpose**

1	2	→	1	a	b	c
2	d	e	f			
a	d					
b	e					
c	f					

- **Proc Summary**

| A | → | D |
| B |
| C |

Where D=function(A,B,C)
Examples of function are: Sum(A,B,C) Mean(A,B,C) Max(A,B,C) Min(A,B,C)

Assignment 4 continued

- Combine multiple rows into one row
 - by group processing **proc summary**
- Reshape table to flip rows & columns
 - using **proc transpose**
 - Also transpose (flip rows & columns) by groups or row
Unit of Analysis

Basic Regression

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \epsilon \]
- \(y \): dependent variable
- \(x_i \): independent variables
- \(\beta_i \): coefficient
- \(\epsilon \): error term

Unit of analysis

- \(y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \epsilon \)
- Table
 - column: \(y, x_1, x_2 \)
 - row: ? (unit of analysis)
- What is unit of \(y/x \)?
 - DV: capacity of hospital (unit: ?)
 - DV: service use (unit: ?)

Reshaping to correct unit

- What do you have?
- What do you want? (unit of analysis)
Example

- Flu data
 - Weekly estimates
- NSDUH
 - Person
- Tx Discharge Data
 - Per hospital

Converting to the desired unit

- Consolidating multiple rows
 - Flu: Weekly estimates to monthly estimates
 - NSDUH: Per person to per race
 - Tx Discharge: Per hospital to per region
- Transposing: changing row/column
 - Flu: Weekly estimates to estimates per state
 - Tx Discharge: Per hospital to per hospital year

Consolidating multiple rows

- Must first determine how to consolidate
 - Sum, max, min, count (of nonmissing) etc
 - Think about each variable and decide on the correct method per variable
- MUST be sorted first by the by varlist
- Example
 - Flu: SUM - Weekly estimates to monthly estimates
 - NSDUH: MEAN - Per person to per race
 - Tx Discharge: SUM- Per hospital to per region

 proc summary (try it)

```
proc sort data=srcfn out=fn nodupkey;
by byvar1 byvar2 ..;
proc summary data=fn;
  by byvar1 byvar2 ..;
  var var1 var2 ..;
  output out= outfn(drop=_type_) sum;
proc summary data= fn;
  by byvar1 byvar2 ..;
  var var1 var2 ..;
  output out= outfn(drop=_type_)
    sum(var1) = outvar1
    mean(var2) = outvar2;
```

Transposing: changing row/column

- Must first determine unit of transpose
 - Per time period
- MUST be
 - sorted first by the by varlist (unit of transpose)
 - one row per unit
- Example
 - Flu: Weekly estimates to estimates per state
 - Full table
 - Tx Discharge: Per hospital to per hospital year
 - Group transpose

 proc transpose (try it)

```
proc sort data=srcfn [out= fn] nodupkey;
by byvar1 byvar2 ..;
proc transpose data= fn out= outfn [prefix=prefix];
  by byvar1 byvar2 ..;
  var var1 var2 ..;
  id idvar;
```
Table Operations: multiple table \(\rightarrow\) 1 table

- **set (Append)**

 Table A \(\rightarrow\) Table A

- **merge (link)**

 Table A \(\rightarrow\) Table A

Table Operations: 1 table \(\rightarrow\) 1 table (reshaping)

- **Proc Transpose**

 \[
 \begin{array}{c}
 1 \\
 a \\
 b \\
 c \\
 \end{array}
 \rightarrow
 \begin{array}{c}
 1 \\
 a \\
 b \\
 c \\
 \end{array}
 \begin{array}{c}
 2 \\
 d \\
 e \\
 f \\
 \end{array}
 \]

- **Proc Summary**

 \[
 \begin{array}{c}
 A \\
 B \\
 C \\
 \end{array}
 \rightarrow
 D
 \]

Where \(D = \text{function}(A,B,C) \)
Examples of function are
\(\text{Sum}(A,B,C) \), \(\text{Mean}(A,B,C) \), \(\text{Max}(A,B,C) \), \(\text{Min}(A,B,C) \)

Think/Hypothesize output first

- Before running your code
 - Think about what you are expecting to see
 - In log (how many vars, obs)
 - Output (freq/print)
 - Run
 - Test that it is what you expected
 - If not, figure out why
 - Was your hypothesis wrong?
 - If so where?
 - Program typo
 - Error in logic
 - Missing data (not located in the correct folder, in the correct form)

Programming: Hye-Chung Kum

- Take INPUT and turn it into OUTPUT
 - OUTPUT: Know what you want/goal
 - INPUT: figure out what you have to work with
- Change what you have (INPUT) to what you need (OUTPUT)
 - Break up the problems into small subproblems
 - Intermediate results (scrap paper)
 - Use functions to calculate the intermediary results

Programming

- Step at a time
 - Jump to confirm before moving onto next step
- Know where you are going
 - Check you are on track every step of the way
Preventing Bugs

- Follow best practices on small projects
 ◦ KISS – Keep It Simple, Stupid
- Good programming practice. Helps debug
 ◦ Small statements
 ◦ Explicit parenthesis
 ◦ Initialize variables
 ◦ Document assumptions

Lab 4

- Lab 4 (2 pts): Due in 1 week
 ◦ Learn how each command behaves
 ◦ Submit excel file with answers
 ◦ Will post answer one week from now
 ◦ Will be on midterm
- Midpoint email (1 pt): Due in 1 week
 ◦ Separate from lab
 ◦ Must have started the assignment to answer
 ◦ Review together

Assignment 4 (9 pts)

- REVIEW timeline (A5 vs Midterm)
- Most difficult
 ◦ Covers ALL topics we have done so far. (final grade: 12)
 ◦ Assignment 5: extension to assignment 4 (4 pt)
 ◦ You have to think about what task is required, and than which commands to use
 ◦ 5 weeks (2/23-3/29): midterm in the middle
- Look at the assignment together

What you learned so far...

- Assignment 1
 ◦ Setup work environment
 ◦ Use the SAS software
 ◦ SAS programming basics
 ◦ data step & proc step
 ◦ libname
 ◦ Writing code & Reading logs
- Assignment 2
 ◦ Understand variables (names, types, labels)
 ◦ To write conditional logic codes
 ◦ Subset columns (variables) from a table
 ◦ Subset rows (observations) from a table
 ◦ Recode, rename variables and calculate new variables
 ◦ Label variables and values

What you learned so far...

- Assignment 3
 ◦ use for loops (iterative loops)
 ◦ use while loops (conditional loops)
 ◦ SAS: use one dimensional arrays

What you learned so far...

- Assignment 4
 ◦ Concatenate multiple tables (more rows)
 ◦ stack tables on top of each other to increase the number of rows
 ◦ using set
 ◦ Be sure to understand the different behavior given different situations
 (i.e. what happens to shared variables? What happens to not shared variables?)
 ◦ Link up multiple tables using a shared key (more columns)
 ◦ align the rows using the shared key, and link multiple tables to increase the number of variables in the tables
 ◦ using merge
 ◦ Be sure to understand the different behavior given different situations
 (i.e. what happens to shared vars? What happens to not shared vars?)
 ◦ What is a 1-to-1 link
 ◦ What is a 1-to-N link
 ◦ What is an N-to-N link (you will not be doing this, but need to understand what this is. This must be done with proc sql in SAS)
Assignment 4 continued

- Combine multiple rows into one row
 - by group processing `proc summary`
- Reshape table to flip rows & columns
 - using `proc transpose`
 - Also transpose (flip rows & columns) by groups or row

Reminder

- Read the required readings
- Do the lab this week to learn the behavior of each command
 - Set
 - Merge
 - Proc summary
 - Proc transpose