What is a Variable?

- A user defined name to represent a piece of memory for storing evaluated value(s). A variable consists of 5 items:
 - **Name**: meaningful human readable name
 - **Data Type**: How to interpret variable for data representation
 - **Size**: How much storage memory is needed to store data value
 - **Value**: Actual value associated with variable stored in memory
 - **Storage location**: Usually hidden from user by the interpreter or compiler

For Our Purposes: Columns

Many variables. A columns of variables

Variable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>Size</th>
<th>Memory Location (hidden from user)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
<td>float32</td>
<td>4 bytes</td>
<td>0x1800F040</td>
<td>3.23</td>
</tr>
<tr>
<td>currKey</td>
<td>char</td>
<td>1 byte</td>
<td>0x1800F049</td>
<td>'k'</td>
</tr>
<tr>
<td>firstName</td>
<td>string</td>
<td>6 bytes</td>
<td>0x1800B0E0</td>
<td>"morgan"</td>
</tr>
<tr>
<td>width</td>
<td>int32</td>
<td>4 bytes</td>
<td>0x1800CCE8</td>
<td>800</td>
</tr>
<tr>
<td>type</td>
<td>int8</td>
<td>1 byte</td>
<td>0x1800CCE7</td>
<td>27</td>
</tr>
</tbody>
</table>

- var label;
- value label (interpretation)
- SAS: proc contents

Naming Rules

Use Valid Names

- Length: reasonably short (8) but descriptive
- Syntax: similar to userid
 - Starts with a single letter followed by any number of letters, digits, or underscores.
 - Digits [0-9], Letters [a-zA-Z], Underscore `_`
 - Capitalization
 - STATA: differentiate
 - SAS: does not differentiate
 - Best to not use (too confusing for people)
- No spaces allowed
 - `_` or camelCase

Naming Rules, cont

write program for people

- Avoid Keywords (if, else, while, for, ...)
 - Result: Error / confusing
- Use Meaningful names
 - currStudent better than fido, purpleSloth, or currItem
- Write readable names
 - currStudent better than (cS, crSt, or crrStdnt)
- Convention
 - b_: binary (bincome, b_income, bIncome)
 - n_: number (nincome, n_income)
 - c_: string / character (cincome, c_income)
 - g_: groups (gincome)

What is a Data Type?

- How to interpret a storage location to retrieve the correct value.
- Integer, Floating point, Logical, Char, Strings are typical data types
- Other languages require you to explicitly specify the data type of variables
- SAS implicitly infers the data type from the first initialization(use) via the specified expression.
 - Number/Char
 - String static (be careful of values getting cutoff)

Data Types : 8 bits = 1 bytes

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Size (bits)</th>
<th>Min</th>
<th>Max</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>logical</td>
<td>1</td>
<td>0 (false)</td>
<td>1 (true)</td>
<td></td>
</tr>
<tr>
<td>int8</td>
<td>1</td>
<td>-128</td>
<td>+127</td>
<td>Numeric, integer, Exact</td>
</tr>
<tr>
<td>single</td>
<td>4</td>
<td>-3.4028e+038</td>
<td>+3.4028e+038</td>
<td>Numeric Real Approximate</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>-1.7977e+308</td>
<td>+1.7977e+308</td>
<td>Ditto</td>
</tr>
<tr>
<td>char</td>
<td>2</td>
<td>N/A</td>
<td>N/A</td>
<td>Encoded character</td>
</tr>
<tr>
<td>string</td>
<td>Varies len+1</td>
<td>N/A</td>
<td>N/A</td>
<td>String of encoded characters</td>
</tr>
</tbody>
</table>
ASCII: character encoding

<table>
<thead>
<tr>
<th>ASCII Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>A</td>
</tr>
<tr>
<td>97</td>
<td>a</td>
</tr>
<tr>
<td>120</td>
<td>l</td>
</tr>
<tr>
<td>121</td>
<td>m</td>
</tr>
<tr>
<td>123</td>
<td>n</td>
</tr>
</tbody>
</table>

Variable Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Stored value</th>
<th>Interpreted value</th>
<th>Label</th>
<th>Interpreted Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int</td>
<td>1000001 (65)</td>
<td>65</td>
<td>65 or older</td>
<td></td>
</tr>
<tr>
<td>Character</td>
<td>1000001 (65)</td>
<td>A</td>
<td>Asian</td>
<td></td>
</tr>
</tbody>
</table>

- 1 0 0 0 0 0 1 = 64 + 1 = 65
- 64 32 16 8 4 2 1

Lab: Vars

- Number
 - Int (long), real (double, float), date time
- String/Character
 - Length matters
- Missing
 - .
 - ”
 - ‘’
 - SAS: .<0

Lab 2 & Assignment 2: Objective

- To write conditional logic codes
- Subset columns (variables) from a table
- Subset rows (observations) from a table
- Recode, rename variables and calculate new variables
- Label variables and values

Recommended Reading

- Carefully read each of the modules below. Each has very good explanations of exactly how to do certain things.
 - http://www.ats.ucla.edu/stat/sas/modules/vars.htm
 - http://www.ats.ucla.edu/stat/sas/modules/subset.htm
 - http://www.ats.ucla.edu/stat/sas/modules/missing.htm
 - http://www.ats.ucla.edu/stat/sas/modules/labels.htm
- Little SAS book
 - Sections in Chapter 3
Data Step

libname data "D:\HPM-Users\kum\phpm672lab2\data";
data outf;
set infn;
...code...
data mynsduh;
set data.nsdhu;
...code...

Subset columns (variables)

- SAS
 - Three places possible
 - Reading in, writing out, during datastep
 - keep, drop
    ```
    data mynsduh;
    set data.nsdhu (keep=var);
    ```
    ```
    data mynsduh;
    set data.nsdhu (drop=var);
    ```

Subset rows (observations)

- SAS
 - `where cond`;
 - `if cond`:

Calculate new variable (assignment)

- SAS (in data step)
 - `var1 = 1 ; * assignment;`
 - `num1=.; * numeric missing value;`
 - `str1="" ; * string missing value;`

Recode existing variables

- SAS (in data step)
 - No difference between existing/new
 - Use if/then/else to conditionally recode
    ```
    var1 = 3 ; * assignment new value;
    ```
    ```
    * One way:
    if race='Asian' then race='Other';
    else if race='Native' then race='Other';
    if race in (1, 2, ..., 'Asian') then a_race='Other';
    ```
    ```
    * Another way:
    if race in ('Asian', 'Native') then race='Other';
    ```
1/30/2018

Rename existing variable
- SAS (in data step)
 - Depending on where you do this, different behavior
 - `rename oldvar=newvar`

To write conditional logic codes
- SAS
 - `if cond then [do:] ...; [end:]`
 - `where cond ;`

Swap x1 & x2
- Write the code in SAS

Label variables
- SAS
 - `label var1 = "LABEL" ;`

Label values
- SAS: define format, then use in data step

```
proc format:
  value fname
  val1= "LAB1"
  val2= "LAB2" ;
* inside data step:
  format var1 fname.
```

Label Var vs Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Size</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcigever</td>
<td>int8</td>
<td>1 byte</td>
<td>1 or 0</td>
</tr>
</tbody>
</table>

- Labeling variable
 - Give a more human friendly name to the variable name.
 - Same as `bcigever` (the computer friendly name for the variable used in the programs)
 - Stored in the header information for the table
Label Var vs Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Size</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcigever</td>
<td>int8</td>
<td>byte</td>
<td>1 or 0</td>
</tr>
</tbody>
</table>

- **labeling value**
 - Give a more human friendly name to the variable value.
 - Same as \(1(=\text{TRUE})\) or \(0(=\text{FALSE})\)
 - Internally, the computer stores 0 or 1
 - But, when printing the values for humans, the computer uses the format you created and designated to use for this variable.
 - Can be used on multiple variables
 - It can be permanent (if done in the data step) or temporary (if done in proc steps)
 - The format must be created BEFORE use
 - Stored in the header information for the table

Type of variables (from analysis perspective)

- **Var Types**
 - Continuous (discrete is continuous in computers)
 - Categorical
 - Boolean
 - ID: no other information but to link tables together. i.e. random patient ID used in two tables.
 - Helps you starting thinking about what you can do with the information
 - Not all variables types exist in datasets.
 - Just state NA.

Basic descriptive analysis

- **Numerical**
 - \(N, \text{ mean, max, min, std dev, unique values (mode)}\)
 - SAS: `proc means`
- **Categorical**
 - Frequencies, cross tabulation
 - SAS: `proc freq`:
 - `tables var1list/nocol norow nopercent;`
 - `tables var1*var2/nocol norow nopercent;`

Reminder

- Make sure to understand lab 2
 - Try to finish by Tues. So you can spend next week doing assignment 2
 - BUT submit with assignment 2 the week after.
 - You MUST submit programs, logs, and output along with assignment 2
 - This is how you will LEARN
 - Most IMPORTANT part of class
- **Dataset(s) you want to use through out the class**
 - Flu dataset
 - Texas Inpatient Public Use Data File (PUDF)
 - http://www.dshs.state.tx.us/thic/hospitals/inpatientpudf.shtml

Assignment 1

- How was it?
 - Output extension wrong
 - `txt`
 - `lst`, but log file
 - No mean of all states
 - Output different