Going Online

- How is everyone doing adjusting to learning online
- Getting comfortable with zoom
- Much more use of gdrive: collaborating online
- https://pinformatics.org/phpm672/Public
- FAQ
- Syllabus addendum
- Completed all gradings for assignments 3 \& 4

2

Midterm Review

Hye-Chung Kum (kum@tamu.edu)
Associate Professor
Population Informatics Lab (https:// pinformatics.org/)
Course URL: http:/ / pinformatics.org/phpm672
Data Science for Health by Hye-Chung Kum is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Record Linkage \& SAS String functions

- Record linkage
- https://support.sas.com/publishing/pubcat/chaps/59343.pdf
- SAS 9.1

5

Questions: Assignment 5?

What you should have learned in 8 weeks

- Learning Objective Questions (do today at the end of class)
- Do you know how to talk to a computer? (To get it to do what you want)
- Do you know how to think data?
- Can you use SAS to manipulate data into a format you need?
- libname, variables, data steps, labels, formats, arrays, loops, conditionals, boolean expressions, proc summary, proc transpose
- What is left: 6 weeks
- 1 week: midterm
- 2 weeks: reusable code (macros)
- (1)+3 weeks: a project to try this out

7

- Midterm take home after class today
- Submit in one Week midnight Monday next week
- Midterm in class: thur
- Office hours \& lab cancelled since midterm goes out today
- while take home midterm (until next Tues)
- What you need:
- Part 2: E-campus, SAS on your laptop
- Part 1: E-campus, camera, sound,

Midterm format (20\%)

- 5 questions (50 points): take home today
- Open book / open notes / use SAS
- Programming/debugging questions
- submit by midnight Monday on E-Campus (one week)
- 25 questions (about $2 * 25=50$ points)
- On E-Campus
- multiple choice similar to practice quiz
- Closed book
- Thur (in class): 1h 15min (proctored on zoom with video + sound on)

9

- Write SAS code to ($8 * 5=40$ pts)
- Data Step 1
- Q1.1 read in datasets X 1 .. Xn and make new dataset Y
- Q1.2 keep, rename, label variables $\mathrm{v} 1-\mathrm{vn}$
- Q1.3 code variable c1
- Q1.4 use arrays and loops to recode variable c2
- Proc Steps
- Q2.5 convert dataset Y to dataset Z

Q2.6 Find and show descriptive (avg/max/median) (Must use SAS code)

- Data Step 2
- Q2.7 link in dataset L to dataset Y
- Q2.8 Print observations meeting condition (Must use SAS code)

Typically few lines of code per question
Submit code/log/output

- Debug the following code (10pts)
- Fix the program to run properly
- Submit code/log/output
- Extra Credit (10pts)

```
******** Section 1: Frist Data Step *******;
code
* Q1. 1;
code
* Q1. 2;
code
******** Section 2: Proc Steps ********;
* Q2. 7;
code
******** Section 3: Second Data Step ********;
```

11

Things to watch out for

- Make your code readable to people
- Indent your code
- Use newline
- Use reason variable names
- Be efficient
- No unnecessary data steps

Extra Credit (10pts=1+2+7)

- Part 2.2
- Part 3.1: Extra Credit
- READ your assignment 2 (this is the first real program you submitted in class) that you submitted, and make is more elegant code now that you know more about coding.
- Submit FOUR files, the regular sas (the more elegant code you wrote)/log/lst AND the code annotated with the changes you made and why (you can do this in word so that you can use formatting, such as bold/color, to annotate.
- Part 3.2: Try to solve a computational problem

13

- Readings from the Little SAS Book
- All sections in chapter 1
- All sections in chapter 2
- All sections in chapter 3
- Sections 4.1 to 4.10 in chapter 4
- All sections in chapter 6
- Note that some of the materials were not covered in class or assignment, but you are responsible for anything covered in the required reading from the book
- Other materials
- All class notes up to this class (slides on the class website).
- None of the articles are part of the midterm (except to the extent covered in class on the notes)

SAS Basics

- program/log/output (lst or html)
- libname
- ;
- setting up work environment
- How you will use the software
- How you will organize your files

15

- keywords
- data, set, merge, obs, where, if, do, end, keep, drop, rename, label, in
- array
- proc
- sort, print, summary, transpose, freq
- functions
- put ()
- compress ()
- lowcase () / upcase ()

Boolean expression evaluation

- X I (Y\&

Questions: midterm? (gdocs)

If you are feeling sick, email Dr. Kum

Assignment 1

- Setup work environment
- Use the SAS software
- SAS programming basics
- data step \& proc step
- Libname (where is the folder with the data?)
- Writing code \& Reading logs

19

- Understand variables (names, types, labels)
- To write conditional logic codes
- Subset columns (variables) from a table
- Subset rows (observations) from a table
- Recode, rename variables and calculate new variables
- Label variables and values

Assignment 3

- use for loops (iterative loops)
- use while loops (conditional loops)
- SAS: use one dimensional arrays

21

- Concatenate multiple tables (more rows)
- stack tables on top of each other to increase the number of rows
- using Set
- Be sure to understand the different behavior given different situations (i.e. what happens to shared variables? What happens to not shared variables?
- Link up multiple tables using a shared key (more columns)
- align the rows using the shared key, and link multiple tables to increase the number of variables in the tables
- using merge
- Be sure to understand the different behavior given different situations (i.e. what happens to shared vars? What happens to not shared vars?)
- What is a 1-to-1 link
- What is a 1 -to-N link
- What is a N-to-N link (you will not be doing this, but need to understand what this is. This must be done with proc sql in SAS)
- New keyword in=

Assignment 4 continued

- Combine multiple rows into one row
- by group processing DrOC SUMmary
- Reshape table to flip rows $\&$ columns
- using Proc transpose
- Also transpose (flip rows \& columns) by groups or row

Table Operations:
 1 table $\rightarrow 1$ table (reshaping)

- Proc Transpose

$\mathbf{1}$	$\mathbf{2}$
\mathbf{a}	\mathbf{d}
\mathbf{b}	\mathbf{e}
\mathbf{c}	\mathbf{f}

$\rightarrow \quad$| 1 | a | b | c |
| :---: | :---: | :---: | :---: |
| 2 | d | e | f |

- Proc Summary

Where $D=$ function (A, B, C)
Examples of function are $\operatorname{Sum}(A, B, C) \operatorname{Mean}(A, B, C) \operatorname{Max}(A, B, C) \operatorname{Min}(A, B, C)$

Table Operations:
 multiple table $\rightarrow 1$ table

- set (Append) Table A Table B \rightarrow| Table A |
| :---: |
| Table B |

- merge (link)	Table A	Table B	\rightarrow	Table A
	Table B			

25

- proc transpose by

Formats

- Create using proc format
- Use Case 1: Labeling values
- Assign using format statement (permanent, temporary)
- Only used interpret the value (ie. printing, display)
- Use Case 2: Can be used to recode variables (know how different)
- put(var, format)
- new variable type? Value?

```
proc format;
    value gender
    1= 'Male'
    2= 'Female'
    other= 'Missing' ;
* In data step;
data outfn;
set infn;
csex $7.;
csex=put(sex, gender.);
```

27

- Array n\{*\} n9-n23;
- Array a\{*\} \$7. a11-a23;
- Name? n and a
- How many elements? $\mathrm{N}=15 \mathrm{a}=13$
- Type? N=number, a=string of length 7
- n15 index? 7

29

- How many times?
- Do while (cond)
- correct expression

